Migrating transformed MDCK cells are able to structurally polarize a voltage-activated K+ channel.

نویسندگان

  • J Reinhardt
  • N Golenhofen
  • O Pongs
  • H Oberleithner
  • A Schwab
چکیده

Cell migration of transformed renal epithelial cells (MDCK-F) depends-in addition to cytoskeletal mechanisms-on the polarized activity of a Ca2+-sensitive K+ channel in the rear part of the cells. However, because of the lack of specific markers for this channel we are not able to determine whether a polarized distribution of the channel protein underlies its functional polarization. To determine whether the migrating MDCK-F cells have retained the ability to target K+ channels to distinct membrane areas we stably transfected the cells with the voltage-dependent K+ channel Kv1.4. Stable expression and insertion into the plasma membrane could be shown by reverse transcription-PCR, genomic PCR, Western blot, and patch-clamp techniques, respectively. The distribution of Kv1.4 was assessed with indirect immunofluorescence by using conventional and confocal microscopy. These experiments revealed that Kv1.4 is expressed only in transfected cells where it elicits the typical voltage-dependent, rapidly inactivating K+ current. The Kv1.4 protein is clustered at the leading edge of protruding lamellipodia of migrating MDCK-F cells. This characteristic distribution of Kv1.4 provides strong evidence that migrating MDCK-F cells are able to insert ion channels into the plasma membrane in an asymmetric way, which reflects the polarization of migrating cells in the plane of movement. These findings suggest that not only epithelial cells and nerve cells, but also migrating cells, can create functionally distinct plasma membrane areas.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Oscillating activity of a Ca(2+)-sensitive K+ channel. A prerequisite for migration of transformed Madin-Darby canine kidney focus cells.

Migration plays an important role in the formation of tumor metastases. Nonetheless, little is known about electrophysiological phenomena accompanying or underlying migration. Previously, we had shown that in migrating alkali-transformed Madin-Darby canine kidney focus (MDCK-F) cells a Ca(2+)-sensitive 53-pS K+ channel underlies oscillations of the cell membrane potential. The present study def...

متن کامل

Oscillating Activity of a Ca 2 + k - sensitive K + Channel A Prerequisite for Migration of Transformed Madin - Darby Canine Kidney Focus Cells

Migration plays an important role in the formation of tumor metastases. Nonetheless, little is known about electrophysiological phenomena accompanying or underlying migration. Previously, we had shown that in migrating alkali-transformed Madin-Darby canine kidney focus (MDCK-F) cells a Ca+sensitive 53-pS K+ channel underlies oscillations of the cell membrane potential. The present study defines...

متن کامل

Inhibitory actions by ibandronate sodium, a nitrogen-containing bisphosphonate, on calcium-activated potassium channels in Madin–Darby canine kidney cells

The nitrogen-containing bisphosphonates used for management of the patients with osteoporosis were reported to influence the function of renal tubular cells. However, how nitrogen-containing bisphosphates exert any effects on ion currents remains controversial. The effects of ibandronate (Iban), a nitrogen-containing bisphosphonate, on ionic channels, including two types of Ca2+-activated K+ (K...

متن کامل

Migrating Renal Epithelial Cells

Cell migration is crucial for processes such as immune defense, wound healing, or the formation of tumor metastases. Typically, migrating cells are polarized within the plane of movement with lamellipodium and cell body representing the front and rear of the cell, respectively. Here, we address the question of whether this polarization also extends to the distribution of ion transporters such a...

متن کامل

Integrin expression and localization in normal MDCK cells and transformed MDCK cells lacking apical polarity.

Epithelial cells polarize in response to contacts with the extracellular matrix and with neighboring cells. Interactions of cells with the extracellular matrix are mediated mainly by the integrin family of receptors. To begin to understand the role of integrins in polarization, we have investigated the expression and localization of three integrin families in the polarized Madin-Darby canine ki...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 95 9  شماره 

صفحات  -

تاریخ انتشار 1998